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When a sensory cue was repeatedly followed by a behavioral event with fixed delays, pairs of premotor and primary
motor neurons showed significant increases of coincident spikes at times a monkey was expecting the event. These
results provided evidence that neuronal firing synchrony has predictive power. To elucidate the underlying
mechanism, here we argue some nontrivial characteristics of the predictive synchronous firing developed by
spike-timing-dependent plasticity in a paradigm similar to classical conditioning. We find that the computationally
developed synchrony shows the modulations of temporal precision, which are quite similar to those observed
experimentally. Thus, our model suggests that the important characteristics of predictive synchronous firing, which
were previously attributed to an animal’s higher cognitive function, can emerge from a synaptic-level mechanism.

It is clearly advantageous for animals to detect and remember the
causal relationships between events, to predict their occurrence
and to prepare for a response (Barto et al. 1983; Desmond and
Moore 1988: Tanji and Shima 1994; Schultz et al. 1997; Schultz
1998). Recent studies show that rate changes and synchronous
firing of cortical neurons differentially engage in these cognitive
functions. Riehle et al. (1997) trained monkeys on a delayed re-
sponse task in which a GO signal to instruct a motor response
repeatedly followed a sensory cue at several possible, fixed delays.
Spikes from pairs of premotor and primary motor (PM/MI) neu-
rons coincided more frequently than expected by chance, par-
ticularly at those times when the monkeys were expecting the
GO signal. If the GO signal was actually presented at one of those
times, the synchronous firing was followed by rate modulations.
The statistically significant spike coincidence, independent of
rate change, was termed “unitary event” (UE) and was considered
to represent the monkey’s anticipation of predictable events.

An interesting and nontrivial characteristic of UEs is that the
degree of synchrony is strongly modulated in the time course of
the individual trials: The longer the preparatory period for a mo-
tor response, the higher the temporal precision of spike coinci-
dences between PM/MI neurons (Riehle et al. 2000). As suggested
in the previous experimental study, this increase of temporal
precision toward the end of each trial may be attributed to some
higher cognitive processes in the monkey brain, such as update
of temporal information. Here, we propose a different theoretical
account for the temporal modulations, based on a synaptic-level
mechanism.

It is widely accepted that the long-term plasticity of syn-
apses underlies various changes in an animal’s behavior, or learn-
ing. Synapses between cortical pyramidal neurons are strength-
ened or weakened if a presynaptic spike is followed or preceded
by a postsynaptic spike, respectively (Markram et al. 1997; Bi and
Poo 1998, 2001; Feldman 2000; Froemke and Dan 2002). The
synapses modifiable by spike-timing-dependent plasticity (STDP)

compete for the timing of postsynaptic spikes and achieve several
distinct functions, such as coincidence detection (Gerstner et al.
1996) and intersynaptic competition (Abbott and Nelson 2000;
Song et al. 2000). Inputs that act in correlated groups can com-
pete most successfully, implying coincidence detection. On the
other hand, the same competition can establish the balanced
excitation that keeps postsynaptic firing moderate and irregular
(Song et al. 2000), implying activity regulation.

In this paper, we argue that STDP may provide a biologically
plausible model of UEs. We show that the statistically significant
number of spike coincidences occurs, with a reliable predictive
power, only through the cooperation of the previously men-
tioned two STDP functions. Moreover, our simulations can ac-
count for the experimentally observed modulation pattern of the
temporal precision of spike coincidences, without relying on any
temporally nonhomogeneous neural process. Our model also
predicts that the synchronous firing can be rapidly reorganized
when the to-be-predicted times of events are changed. Although
the two STDP functions are already known in the literature
(Gerstner et al. 1996; Abbott and Nelson 2000; Song et al. 2000),
our model demonstrates how they may cooperate in a specific
cognitive function. Thus, this study shows an interesting ex-
ample of the possible relationship between the synaptic plasticity
and behavioral-level changes in neural responses, such as shown in
the spatial navigation by the rat hippocampus (Mehta et al. 2002).

RESULTS
See Materials and Methods for details of our network model and
simulations. Animals can predict events only if the brain knows
how long it has been since a sensory cue, and this information
must be accessible to the PM/MI neurons. Therefore, each PM/MI
neuron in this model receives a sequence of timed spikes, besides
background random spikes of constant rate and a brief depolar-
izing input representing a target event, that is, a GO signal (Fig.
1). In the timed spike sequence, some spikes (but not all) are
initiated by and time-locked loosely to the sensory cue (Fig. 1),
providing its temporal representation. Hereafter, the sequence
may be termed a “loosely timed sequence” (LTS). The LTS plays a
role similar to that of the so-called complete serial-compound
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stimulus in the conventional Hebbian learning theory of classical
conditioning, that is, a spectrum of the timed processes initiated
by a sensory cue (Barto et al. 1983; Montague et al. 1996; Moore
et al. 1998). As the prefrontal cortex is generally considered to
maintain timing information for organizing behaviors (Fuster
2001), the cortical region may be a candidate locus where we can
find LTS. However, although there is much behavioral evidence
that humans and animals can recognize intervals in the range of
seconds (Matell and Meck 2000), the neural substrate has not yet
been clarified. The existence of LTS must also be confirmed by
further experiments.

The background random spikes may represent the continu-
ous influences of recurrent feedback on the PM/MI neurons. In
this study, different PM/MI neurons were innervated by com-
pletely different sets of background spikes and LTS spike trains.
Therefore, no spurious spike coincidences will emerge from com-
mon modulations of input spikes.

All the excitatory synapses receiving the LTS or the back-
ground spikes are modifiable under the STDP rule found at the
synapses between cortical pyramidal neurons. Namely, if a pre-
synaptic spike at an excitatory synapse is followed by a postsyn-
aptic spike, the peak conductance of the synapse is strengthened.
For the reversed timing, the synapse is depressed. Parameter val-
ues were fixed such that the LTS and the background spikes co-
activated the coincidence detection function (Gerstner et al.
1996) and the activity regulation function (Song et al. 2000) of

STDP on the individual PM/MI neurons. We show that the co-
operation of the two functions is essential for the emergence of
predictive synchronous firing of the PM/MI neurons from noisy
background.

In the present study, the PM/MI neurons were trained simi-
larly to the monkeys in the previous experiments (Riehle et al.
1997, 2000), as described below. In each learning trial, a cue
signal appears at 100 msec to initiate the timed spikes. Then, a
GO signal appears with equal probabilities at one of three prede-
termined times (typically, t1 = 800, t2 = 1300, and t3 = 1800
msec). According to experimental observations, the GO signal
can always evoke spikes from each PM/MI neuron. In this study,
the GO responses were induced in all the PM/MI neurons by a
brief depolarizing input to these neurons. Possible delays of the
GO responses in PM and MI from the visual stimulus (GO signal)
were neglected. A learning trial is terminated 200 msec after the
occurrence of the GO signal. For the convenience of notation, we
call the GO signal presented at the three times “GO1,” “GO2,”
and “GO3,” respectively.

One trial set of simulations consisted of 500 learning trials
followed by 50 test trials. The spikes evoked in the test trials were
used for the UE analysis explained later. During the learning and
test trials, the mean temporal positions of the individual loosely
timed spikes in each LTS were kept unchanged. In the monkey
experiments, the GO signal was followed by the rate modula-
tions. The GO signal, however, was not presented in the present
test trials because we are only interested in the modulations of
synchronous firing that occurs in the absence of the GO signal.
The duration of a test trial was set to 2000 msec. A sufficient
number of trial sets were performed to improve statistical power.

The Self-Organizing LTS-
and Background-Mediating Synapses
Competition between synapses yielded bimodal weight distribu-
tions for both LTS- and background-mediating synapses and
achieved the balanced excitation to regulate postsynaptic firing
in a moderate range. Figure 2, A and B, display the weight distri-
butions of the self-organizing LTS- and the background-
mediating excitatory synapses, respectively. With an appropri-
ately tuned activity regulation function, the distribution of LTS-
mediating synapses can be made more strongly polarized than
that of the background-mediating synapses, as in the figures. In
particular, the LTS-mediating synapses are dominant over the
population of the most strengthened synapses (i.e., g/gmax > 0.9),
which implies that postsynaptic spikes have developed stronger
correlations with the loosely timed spikes than the background
spikes.

To ascertain the dependence of the synaptic modifications
on the individual spike times in an LTS, the LTS-mediating syn-
apses and the corresponding LTS inputs were rearranged in de-
scending order of synaptic weights (Fig. 2C). If a synapse was
repeatedly activated shortly before some of GO1, GO2, or GO3 in
the repetition of learning trials, the synapse tended to be the
most strengthened. On the contrary, if a synapse was activated
immediately after some GO signals, the synapse tended to be
strongly depressed. Thus, even in the noisy background, the
STDP rule preferentially enhanced those synapses consistently
activated shortly before the GO signals by the loosely timed
spikes that acted in correlated groups. We show later that the
activity regulation function of STDP, which is implied by Figure
2, A and B, is essential to the detection of those LTS spikes cor-
related with the GO responses.

Coincidence Analysis
Our analysis of spike coincidences follows the basic method pro-
posed previously (Grün et al. 2002). For all 190 pairs of PM/MI

Figure 1 The cortical neural network model and simulated delayed
response task. The neural network consists of 20 integrate-and-fire neu-
rons that mimic monkey premotor or primary motor (PM/MI) neurons.
Each neuron is innervated by a loosely timed firing sequence (LTS) con-
sisting of 300 spike trains, 1300 Poisson-distributed spike trains that
mimic noisy background inputs (1000 excitatory and 300 inhibitory in-
puts) from recurrent connections, and the input (Isignal) representing the
GO signal. The spike trains in the LTS, which differ for different neurons,
consist of random spikes (gray bars) and spikes time-locked loosely to a
sensory cue (black bars). The sensory cue initiates firing sequences of the
loosely timed spikes at 100 msec; before the cue, each PM/MI neuron
receives the random spikes in LTS and the background inputs. The timed
spikes distribute uniformly through time and show, trial by trial, Gauss-
ian-distributed timing jitters with a standard deviation of 10 msec. In this
study, recurrent connections between the PM/MI neurons are not mod-
eled explicitly. Thus, the effects of recurrent connections are represented
only by the random background inputs in the present simulations. In a
learning trial, the GO signal appears at one of the three predetermined
times (t1, t2, and t3 = 800, 1300, and 1800 msec, respectively) with equal
probabilities. The GO signal is not presented in test trials.
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neurons, we calculated the rates of spike coincidences that oc-
curred in a 100-msec-sliding time window in 5-msec steps. A pair
of spikes can be regarded as coincident only if they are separated
by less than this time step. Thus, the time step sets the measure
for coincidence analysis and is hereafter called the “coincidence
measure.” We also calculated the accidental coincidence rate ex-
pected from the firing rates of each chosen pair based on the null
hypothesis of independent firing. In each 100-msec time win-
dow, statistical significance of the excessive spike coincidence is
calculated from a Poisson distribution (with the mean set to the
expected number of coincidences) as the cumulative probability
P of observing the actual number of coincidences or even a larger
one by chance. The larger the number of excessive coincidences,
the closer P is to 0. Whenever P is smaller than 5% in some
100-msec time window, we regard it as an epoch with the statis-
tically significant number of spike coincidences. We denote the
occurrence time of the UE by the middle of this epoch.

Figure 3A displays the raster plots of a typical neuron pair in
50 test trials. In this figure, colored (blue and red) circles indicate
coincident spikes; the red circles represent the coincident spikes
in the epochs with the statistical significance of P < 0.05. Figure
3B shows the mean firing rates in each 100-msec time window.
During the entire period of the trial, the rates were not signifi-
cantly modulated. In Figure 3C, the time course of spike coinci-
dences is shown in terms of the “joint-surprise” value defined as

log10 �1 − P
P �,

which provides a better resolution in visualization than the raw

P-values. As in the previous experiment, the sta-
tistically significant number of the spike coinci-
dences tended to occur in the neighborhood of
the three anticipated times of the GO signal, even
though it was not presented in the test trials. The
raster plots of the neuron pair and the time course
of spike coincidences are surprisingly similar to
those obtained in the previous experiments.

In the UE analysis, 57 pairs show UEs at one
of the expected times, 18 pairs at two of the ex-
pected times, and two pairs at all of the three ex-
pected times. Here, a UE was regarded as time-
locked to an anticipated time, if the UE occurred
within �50 msec of that time. Whereas ∼10% of
all neuron pairs showed no UEs, many pairs
showed some UEs that were time-locked to none
of the anticipated times. In the simulations, the
number of the neuron pairs that fire coincidently
at an anticipated time depends on the number of
the LTS spike trains that happened to have the
loosely timed spikes before that time. If we in-
cluded a larger number of the LTS spike trains
(and the corresponding synapses), the number of
coincidently firing neuron pairs would be in-
creased. Therefore, the present counts of neuron
pairs should not be taken seriously. We only re-
mark that not all the UEs were in fact time-locked
to the GO signals in monkey motor cortices
(Riehle et al. 1997, 2000).

Nevertheless, synchronous firing of suffi-
ciently many PM/MI neurons could preserve the
predictive power in the present simulations, as
shown in the next section. The results indicate
that spike synchrony provides a reliable predic-
tion, if sufficiently many coincident spikes are de-
tected for decoding.

Dual Roles of STDP in the Predictive Synchrony
The relatively high-frequency spontaneous firing of neurons in
PM and MI was induced by a large number of the background
inputs to the individual PM/MI neurons. If the rate of spontane-
ous firing is high, it would be difficult for these neurons to detect
and maintain the correlations between postsynaptic spikes and
the loosely timed spikes that are much less frequent than the
background spikes in this model. Therefore, it would be difficult
to develop UEs at a high rate of spontaneous firing.

Nevertheless, we can show that STDP maintains the statis-
tical significance of spike coincidences against large changes in
the activation level of the PM/MI neurons. To show this, we
examined how the emergence of UEs depends on the average rate
r of the background activity, because it determines the firing rate
of the PM/MI neurons. We conducted 10 sets of trials with dif-
ferent LTSs for each case of r = 10, 20, and 30 spikes/sec and
performed the UE analysis for all the neuron pairs. Because of the
activity regulation, the average output firing rate of the PM/MI
neurons depended modestly on r (Fig. 4A). If the activity regula-
tion were absent, the rate would show a steeper, supralinear in-
crease. Around the expected times of GO signal, the population
firing rate showed a slight increase followed by weak depression,
reflecting the temporal profile of the STDP learning window (Fig.
4B, bottom). Such modulations, however, were only visible in
the mean firing rate averaged over all the PM/MI neurons (cf. Fig.
3B). In Figure 4B (upper three panels), the temporal distributions
of epochs with the statistically significant number of spike coin-
cidences were calculated in the following way: In each trial and
each neuron pair, we counted the number of times that P took a

Figure 2 Competition between the self-organized synaptic weights. (A) Normalized
weight distribution of background-mediating synapses. (B) Normalized weight distribution
of LTS-mediating synapses. (C) The LTS-mediating synapses on a PM/MI neuron are rear-
ranged in descending order of magnitudes (left), and the LTS spikes to the individual synapse
are also shown in this same order (right). To see the relative times between the GO signals
and the LTS spikes, those spikes that precede or follow the GO signals by <40 msec are
represented in red or blue, respectively.

Predictive Synchrony Modeled by STDP

Learning & Memory 269
www.learnmem.org



value <5% in each time bin. Then, the count was summed up
over all the neuron pairs and 10 trial sets for each value of r. We
can see sharp peaks at the three anticipated times of the GO
signal for relatively low background firing rates (10 and 20 Hz).
The peaks are less sharp, but still distinct for a background firing
rate of 30 Hz. Thus, the predictive coincident firing can be de-
veloped in a broad range of the background-firing rate.

To further confirm the essential role of the STDP-induced
activity regulation in the emergence of the predictive synchro-
nous firing, we enhanced the leading effect (Câteau and Fukai
2003) of synaptic potentiation by slightly increasing Ap from
0.01 to 0.0103. This modification degrades activity regulation by
less irregular neuronal firing; the coefficient of variation,
CV = 0.6 for the new plasticity rule, whereas CV = 0.9 for the
previous rule. Intuitively, we may expect that the enhanced long-
term potentiation would improve the coincidence detection
function of STDP and would make it easier for the PM/MI neu-
rons to detect and “remember” the LTS spikes that coincide with
the GO signal. However, this was not the case: UEs did not appear
preferentially at the to-be-predicted times (Fig. 4C). The less ef-
fective activity regulation function prevented the neurons from
establishing a balanced, irregular firing regime in which they are

sensitive to the presynaptic spikes that act in correlated groups
(Song et al. 2000). Such sensitivity is essential for selectively
strengthening the synapses of the timed spikes correlated with
the GO responses, while weakening the remaining synapses.

We also examined whether a multiplicative STDP rule is
capable of organizing predictive synchronous firing: In the mul-
tiplicative rule, a synapse is strengthened (�t > 0) or depressed
(�t < 0) by an amount �g = (gmax � g)Ap exp(��t/�p) or �g = gAd

exp(�|�t|/�d), respectively. The rule induces no competition be-
tween synapses and consequently no activity regulation (Kistler
and van Hemmen 2000; van Rossum et al. 2000; Rubin et al.
2001; Câteau and Fukai 2003). The results obtained (data not
shown) were quite similar to those shown in Figure 4C; as ex-
pected, synchronous firing was not predictive in the absence of
the activity regulation.

Finally, we examined whether a spike-timing-dependent
learning rule, which operates similarly to the conventional rate-
based Hebbian learning, may substitute for the (additive) STDP in
predictive synchrony. In the modified learning rule, the LTD
component was removed from the STDP learning rule. Thus, at
every postsynaptic spike firing, both background-mediating and
LTS-mediating synapses were strengthened according to the tem-

Figure 3 Raster plot of a typical PM/MI neuron pair and unitary events. � = 10 msec and r = 20 Hz. (A) Spike raster obtained in 50 test trials for a typical
neuron pair firing at an average rate of 20 spikes/sec. Each tic or each colored dot represents one discharge. Blue dots indicate the coincident spikes
that are statistically not significant. Red dots indicate UEs, namely, the coincident spikes that occur in the epochs with the statistically significant number
of spike coincidences. (B) The time course of firing rates of the two neurons. The firing rate was evaluated in 100-msec windows in every 5-msec step.
(C) The time course of spike coincidences is shown in terms of “joint-surprise” value: log10[(1 � P)/P]. The value is calculated from the cumulative
probability P of observing the actual number of coincidences or even a larger one by chance in each 5-msec bin and is plotted for the neuron pair shown
above. If P is <5% (red line) in some bin, the number of spike coincidences in the corresponding 100-msec epoch (its middle is given by that bin) is
regarded as statistically significant. Similarly, the epochs with significantly less excessive spike coincidences are defined by P > 0.95 (blue line).
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poral delays (�t > 0) from the latest presynaptic spikes at the
individual synapses. Then, the synaptic weights were renormal-
ized to keep the average of all the synaptic weights unchanged.
Such a renormalization procedure has been known to induce a
competition between synapses in the rate-based Hebbian learn-
ing (von der Marsburg 1973). Figure 4D shows the resultant UE
distribution calculated as in Figure 4C. The temporal distribution
exhibited no significant peaks predicting GO signals. The distri-
bution of the self-organized excitatory synapses revealed that the
winners were selected from the background-mediating synapses,
whereas the LTS-mediating synapses were defeated in the com-
petition (Fig. 4E). These results imply that in this learning rule,

synapses compete for postsynaptic firing rate, and that in such a
situation the LTS-mediating synapses stimulated at low spike
rates have an extremely small chance to survive the competition.

Changes in Temporal Precision of Spike Coincidences
In the typical results of the experiments, the later the time of an
excessive amount of spike coincidences, the higher the temporal
precision of the spike coincidences. At late times (typically, >500
msec), the statistically significant number of spike coincidences
could be detected even if the coincidence measure was as short as
2 msec, whereas excessively many spike coincidences were de-

Figure 4 Detection of UEs at different rates (r) of the excitatory background activity. (A) Owing to the activity regulation function of STDP, the average
firing rate of the individual PM/MI neurons vary only moderately against the modulations in r. Here, � = 5 msec. (B) For r = 10 Hz, 20 Hz, and 30 Hz,
we counted how many times the epoch with the statistically significant number of spike coincidences occurred in each time bin over all the PM/MI
neuron pairs and 10 trial sets (upper three panels). The sharp peaks at the onset of trials in the cases of r = 20 and 30 Hz were artifacts caused by the
sudden raises in firing rate. The peaks are distinctly high at the expected times of the GO signal, especially at the time of GO3. The population firing
rates averaged over all 20 PM/MI neurons are shown for the different values of r (bottom). (C) The activity regulation function was made less effective
by increasing the ratio Ap/Ad. In all of the present simulations with the increased ratio, the temporal distributions of the epochs with excessively many
spike coincidences showed no predictive power. (D) A similar distribution obtained for the Hebbian learning that induces a rate-based synaptic
competition through a renormalization procedure. Coincident spikes exhibited no predictive power. (E) The weight distribution of the self-organized
synapses in the rate-based Hebbian learning.
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tectable at early times only with the coincidence measures
greater than several milliseconds. It was speculated that the im-
provement of synchronicity at late times reflected a continuous
update of temporal information through the formation of dy-
namical cell assemblies in the monkey brain (Riehle et al. 2000).
However, there seems to be no a priori reason to expect that such
an update preferably enhances, rather than suppresses, the spike
coincidences toward the end of each trial.

The present model proposes a different mechanism for this
interesting phenomenon. In Figure 5, we examined similar
changes in the temporal precision of spike coincidences in the
present model. We conducted the sliding time window analysis
of the same data sets, varying the size of the coincidence mea-

sure. We summed up the number of the times that the value of P
became <5% in each time bin over all the neuron pairs and 10
trial sets. When the loosely timed spikes exhibited relatively large
jitters in timing (� = 10 msec), the early peaks at 800 msec were
greatly suppressed compared with the peaks at 1800 msec for all
three values of the coincidence measure (Fig. 5A). Especially, the
early peak almost disappeared for a 2-msec measure. When those
timed spikes were precise (� = 0 msec), the suppression of the
early peaks was found only in the case of the 2-msec measure
(Fig. 5B). Thus, the early spike coincidences are considered to
occur in a broad temporal window of 5–10 msec, whereas the
coincidences occur in a narrower time window at the late times.
In the experiments, differences of a few hundred milliseconds in

Figure 5 The modulations in the temporal precision of spike coincidences. The sliding time window analysis of the same data set was conducted with
different coincidence measures (10, 5, and 2 msec). Here, r = 10 Hz. (A) The later an anticipated time (800, 1300, and 1800 msec), the higher the
corresponding peak in the temporal distribution of the epochs with excessively many spike coincidences. The peak at 800 msec is invisible in the case
of a 2-msec window. The timing jitters were given by � = 10 msec. (B) Similar temporal distributions were calculated in the case of � = 0 msec (precisely
timed spikes). In this case, large suppression of early peaks can be seen only in the analysis with the 2-msec window. (C) Weight distributions of the
LTS-mediating synapses responsible for the statistically significant number of spike coincidences at t1 (black) and t3 (gray) in the data set analyzed
in A.
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the preparatory period resulted in large differences in the tem-
poral precision of coincidences. Therefore, the model with
loosely timed spikes agrees better with the experiments than that
with precisely timed spikes.

The temporal precisions at different times are determined
primarily by the conductance distributions of the LTS-mediating
synapses responsible for the spike coincidences at t1, t2, and t3
(we may term these synapses “GO1-synapses,” “GO2-synapses,”
and “GO3-synapses,” respectively). As shown in Figure 5C, the
conductance distribution of the GO3-synapses is more strongly
polarized toward the maximum than that of the GO1-synapses.
This led to more precise spike coincidences at t3 than at t1. The
mechanism underlying the differences in the conductance dis-
tributions can be understood as follows. In a learning trial, most
synapses, except those strengthened by the GO response, un-
dergo the depression caused by random inputs. The longer the
trial, the stronger the depressing effects and the greater the con-
sequent differences between the weakened and strengthened
synapses. Because t1 < t2 < t3, the GO1-synapses should suffer the
strongest depressing effect, whereas the GO3-synapses suffer the
weakest one. Therefore, the two synapse groups should be dis-
tributed differently, as shown in Figure 5C. Thus, our model ac-
counts for the modulations of synchronicity based on the syn-
aptic plasticity rule.

The Role of the Random Spikes in LTS
The random spikes in LTS spike trains are not correlated with the
GO responses and hence cannot be associated with the responses
by STDP. It is worthwhile studying the role of these spikes in the
present simulations. Figure 6 shows the temporal distributions of
the epochs with excessively many spike coincidences over all the
neuron pairs in the absence of the random spikes. Similarly to
Figures 4B and 5, A and B, the distributions were calculated for
different values of the coincidence measure. For a 2-msec coin-
cidence measure, the most prominent peak of the distribution
appeared at the earliest time (800 msec). This temporal pattern is
just opposite to those obtained in Figures 4B and 5, A and B, and
to the experimental modulation pattern of the temporal preci-
sion of spike coincidences. In terms of the plasticity-based
mechanism explained previously, the results can be understood
as the effects of weakened noise.

Reconstruction of New Predictions
If the environment surrounding an animal changes, the animal
must reconstruct a new model of the external world in its brain
to behave appropriately. This relearning process should take
place in the relevant neuronal circuits. It is often difficult to
assess the relearning process in electrophysiological recording
studies of behaving animals. It is still interesting, however, to
examine whether and how the present neural network model
modifies its organization to adapt to a new environment, which
in the present context is defined as a new set of the times for the
GO signal presentation.

The same network that was previously trained with the GO
signals delivered at 800, 1300, and 1800 msec was retrained with
a new set of signals delivered at 800, 1100, and 1800 msec. In
Figure 7A, the temporal distributions of the epochs with exces-
sively many spike coincidences are compared before and after
200 relearning trials. In the latter case, a sharp peak at 1300 msec
disappeared, while a new peak was appearing at 1100 msec. Fig-
ure 7B displays the heights of the two peaks at 1300 msec and
1100 msec at various steps of the relearning process. As the re-
learning process proceeded, the peak heights at 1100 and 1300
msec gradually interchanged, which may represent a gradual ex-
change of their cognitive roles.

DISCUSSION
Neuronal information coding may partly rely on spike timing or
coherence (Ahissar et al. 2000; Steinmetz et al. 2000; Engel et al.
2001; Fries et al. 2001; Lu et al. 2001; Salinas and Sejnowski 2001;
van Rullen and Thorpe 2001; Mehta et al. 2002). “Unitary
events” were suggested to engage in representing an animal’s
expectancy of predictable events. In this study, we modeled UEs
by means of the loosely timed firing sequences and STDP. STDP
conditions PM/MI neurons to respond to the LTS spikes corre-
lated with the GO responses of these neurons. We have demon-
strated that the cooperation of the activity regulation function
with the coincidence detection function is essential to the emer-
gent predictive power of spike coincidences (Fig. 4C).

The biological reality of this model critically relies on the
existence of LTS. It is noted that real LTS can be quite different
from the set of LTS spike trains used in this study. For instance,
each spike train of LTS may provide timed spikes only in a short
temporal window, leaving the majority of the LTS spikes ran-
dom. If a greater number of LTS spike trains are involved in the
model, and if the brief packets of timed spikes in many LTS spike
trains are distributed uniformly over time, we can easily dupli-
cate essentially the same results as shown here.

Most interestingly, the present model achieves a novel in-
sight into the mechanism underlying the changes in the tempo-
ral precision of spike coincidences (Fig. 5). It was argued that the
phenomena reflected an internal update of temporal informa-
tion in the monkey brain during the preparatory period. How
this update, however, modulates the synchronous firing re-
mained unclear. Alternatively, the improved synchronicity at

Figure 6 The temporal precision of spike coincidences in the absence
of random spikes in LTS. The sliding time window analysis of the same
data set was conducted with different coincidence measures (2, 5, and 10
msec), and the temporal distribution of the epochs with excessively many
spike coincidences was calculated in each case. Here, r = 10 Hz, � = 10
msec, and the rate of time spikes in LTS was 2 Hz. The highest peaks are
designated by asterisks in the individual distributions. In experiments, the
later an anticipated time of GO signal, the higher the temporal precision
of spike coincidences. The simulation results shown here display different
modulation patterns, which is evident from the distribution for the
2-msec coincidence measure (bottom).
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late times may reflect the animal’s elevated attention or motiva-
tion (Steinmetz et al. 2000; Engel et al. 2001; Fries et al. 2001), as
the conditional probability to have the GO signal was increased
toward the end of each trial (e.g., if there are three equally likely
times of the GO signal, the conditional probabilities to have it at
the first, second, and third anticipated times are 1/3, 1/2, and 1,
respectively). This possibility, however, is also unlikely, because
the epochs with excessively many spike coincidences also ap-
peared at the times when animals were not expecting the GO
signal. In the proposed model, the changes in synchronicity were
induced during learning by the differences in the depressing ef-
fects on the individual synapses (Fig. 5C).

We have shown that the experimentally observed temporal
modulations of the precision of spike coincidences can be much
better understood in the presence, rather than absence, of the
random spikes in LTS (Fig. 6). This, however, does not imply that
these random spikes are useful for producing UEs that have pre-
dictive power. In fact, the peaks at the expected times of the GO
signal were higher in Figure 6, where LTS had no random spikes,

than in Figure 5A, where LTS had random spikes (in both simu-
lations, r = 10 Hz and � = 10 msec). These results simply suggest
that the LTS spike trains, if they do exist and engage in the pre-
dictive synchrony, are likely to be noisy.

Another interesting feature predicted by this model is that
the predictive spike coincidences reorganize flexibly to adapt to a
new environment (Fig. 7). Because all excitatory synapses con-
tinuously undergo competition, whether they mediate LTSs or
background activity, the changes in the GO responses easily re-
organize the weight distribution of the synapses. The results im-
ply that the learning performance does not heavily depend on
the initial weight distribution. The initial distribution, however,
may affect the temporal distribution of the spurious UEs that are
not time-locked to the GO signals. If some timed spikes in a LTS
spike train contribute to predictive synchronous firing at a cer-
tain time, other spikes in the same train have some chances to
contribute to spurious UEs at different times. This explains why
spurious UEs appear in this model, as was the case in experi-
ments.

The standard multiplicative STDP rule (Kistler and van Hem-
men 2000; van Rossum et al. 2000; Rubin et al. 2001) was inca-
pable of organizing predictive synchrony. The results, however,
do not exclude the possible emergence of predictive synchrony
under multiplicative-type rules. According to the general theory
of STDP (Câteau and Fukai 2003), it seems easy to modify the
multiplicative rule so that it may show competition between syn-
apses. Moreover, STDP has been studied in such a restricted ex-
perimental condition that only a limited number of synapses are
activated on a postsynaptic cell. It has not been fully understood
whether synapses undergo additional forms of competition,
when a tremendous number of synapses are simultaneously ac-
tivated. In fact, activity-dependent global scaling of synaptic
weights (Turrigiano et al. 1998; Royer and Paré 2003) was sug-
gested to induce an alternative form of competition (van Rossum
et al. 2000). It was also shown recently that the plasticity rule
depends on pairing pre- and postsynaptic spikes beyond the
nearest neighbors (Froemke and Dan 2002). We have examined
in the present model that such long-range interference within
the individual spike trains does not remove competition between
synapses, and hence should not change the qualitative results of
this study.

The learning rule with the conventional synaptic normal-
ization failed to give predictive power to synchronous firing in
our model. This learning rule also yielded synaptic competition,
selectively strengthening those synapses mediating presynaptic
spikes of higher rates (Fig. 4E). Thus, the LTS-mediating synapses
were strongly depressed as they received presynaptic spikes of
low rate. On the other hand, the STDP learning (with an expo-
nentially decaying learning time window and Ap�p < Ad�d) exerts
stronger depressions on synapses at higher presynaptic firing
rates. This characteristic of the STDP leads to an efficient post-
synaptic activity regulation and improves the ability of neurons
to detect the coincident spikes embedded in inputs of low spik-
ing rates. Thus, both rate-based Hebbian learning and the STDP
learning give rise to synaptic competition, but their functional
roles are found to be quite different. It is noted that the virtue of
STDP in the present model may disappear for strongly asymmet-
ric STDP learning rules, as they may lead to the selective poten-
tiation of higher-rate synaptic inputs (Burkitt et al. 2004).

In the present simulations, mutual connections between the
PM/MI neurons were not explicitly included, and the effects of
recurrent connections were replaced with a large amount of back-
ground spikes. Although the inclusion of mutual connections
did not change the qualitative results of the present simulations
(results not shown), to what extent the internal dynamical pro-
cess among PM/MI neurons modulates the statistical significance

Figure 7 Relearning a new set of the GO signals delivered at t1 = 800,
t2 = 1100, or t3 = 1800 msec with equal probabilities. (A) Comparison
between the temporal distributions of the epochs with excessively many
spike coincidences before relearning and after 200 relearning trials. The
asterisks at 1100 msec and 1300 msec show the two peaks of interest. (B)
As the relearning process proceeded, the peak heights at 1100 and 1300
msec gradually interchanged until the former peak reached a maximal
height and the latter peak diminished to a background level.
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of synchrony must be tested also in a large-scale network. Such
simulations, unfortunately, require an enormous computational
resource because the number of modifiable synapses becomes
very large (here, 26,000 modifiable synapses were involved).

The expectancy-related responses of the basal ganglia (Mon-
tague et al. 1996; Schultz et al. 1997; Hollerman and Schultz
1998; Suri and Schultz 2001) and the cerebellum (Moore et al.
1998; Barto et al. 1999) have been successfully modeled using a
temporal-difference (TD) learning algorithm (Barto et al. 1983) in
reinforcement learning. Both the present model and these mod-
els represent temporal information by a cascade of the time-
tagged activities initiated by a sensory cue. We may model the
time-tagged activities in terms of the so-called synfire network,
that is, a layered network propagating a synchronous activity
(Abeles 1991; Abeles et al. 1993; Prut et al. 1998; Diesmann et al.
1999; Câteau and Fukai 2001; Litvak et al. 2003). The synfire
network propagates precisely timed spike sequence of 1-msec
precision, for which the generation of UEs by STDP is obviously
easier than for the less precise LTS (Kitano et al. 2003). As shown
in Figure 5, however, sufficiently large modulations of the tem-
poral precision of spike coincidences, which characterize the
UEs, are found for such LTS that show 20- to 30-msec precision in
spike timing. In fact, the rate changes with this degree of preci-
sion were found to be more informative than those spikes with
1-msec precision in the visual information processing (Oram et
al. 1999; Richmond et al. 1999). Several ideas have been proposed
for the neural representation of temporal information (Buono-
mano 2000; Matell and Mech 2000; Okamoto and Fukai 2001),
but the issue is open for further experimental and theoretical
studies.

MATERIALS AND METHODS
Here, we describe the mathematical details that are not given
above. In the present study, we include 20 PM/MI neurons in the
network shown in Figure 1. We model a PM/MI neuron using the
leaky integrate-and-fire model described as

�m

dV
dt

= Eleak − V + Isignal + IPoisson + ILTS

with �m = 20 msec, Eleak = �70 mV. When the membrane poten-
tial reaches a spike threshold of �54 mV, the neuron generates
an action potential and the membrane potential is reset to �60
mV. The neurons are driven by three different input sources (Fig.
1). Isignal is a depolarizing input representing a GO signal. At the
GO signal, Isignal is held at 8 mV for 20 msec. The GO signal is
assumed to always elicit spikes from the PM/MI neurons. IPoisson
and ILTS represent the synaptic currents evoked by Poisson-
distributed spike trains and the loosely timed firing sequence,
respectively. The background inputs are mediated by 1000 excit-
atory and 300 inhibitory synapses, and their typical mean rates
are 10–20 spikes/sec at an excitatory synapse and 10 spikes/sec at
an inhibitory synapse. Therefore, the present network model
with 20 neurons involves 26,000 modifiable synapses. The back-
ground inputs induce relatively high-frequency spontaneous fir-
ing of 10–20 Hz in the individual PM/MI neurons, as observed in
vivo.

We briefly mention possible finite size effects in the present
simulations with 20 neurons. In fact, such effects seem to be only
small. First, different neurons receive different LTS and back-
ground spikes. Therefore, no spurious spike coincidences are
caused by common modulation by the external inputs. Second,
the UE analysis does not count the spike coincidences expected
from firing rates of neuron pairs (see Results). Thus, the analysis
is tolerant of the rate fluctuations in a small neural population.
Finally, and most importantly, we include all 190 neuron pairs in
the analysis. This total number of neuron pairs is large enough
for the statistical analysis.

An LTS consists of 300 spike trains that are mediated by 300
excitatory synapses. In our previous related study (Kitano et al.

2003; Kitano and Fukai 2004), we modeled the cascade of time-
tagged activities using the so-called synfire network, that is, a
layered network propagating a synchronous activity (Abeles
1991). Synfire networks are known to produce spike sequence of
even 1-msec precision (Diesmann et al. 1999; Câteau and Fukai
2001). In this study, we slightly relax the condition on the tem-
poral precision of timed spikes. Each spike train of the LTS is a
superposition of timed spikes and random spikes. The former
spikes are initiated by and time-locked loosely to a sensory cue
given at the beginning of every trial, are uniformly distributed
over time at a rate of 2 spikes/sec, and last until 200 msec after
appearance of the GO signal. These spikes show timing jitters
from trial to trial around fixed times according to a Gaussian
distribution of variance, �2. Typically, � = 10 msec, but other
values were also tested in several cases. The random spikes in the
LTS obey a Poisson distribution with a mean rate of 3 spikes/sec.

A synaptic current is described as I = gs(V � Esyn) with a gat-
ing variable s. If a presynaptic spike arrives at a synapse, s is set as
s → s + 1.0. Otherwise, s decays exponentially with a 5-msec de-
cay constant. We set Esyn = EAMPA = 0 mV for excitatory synapses
and Esyn = EGABA = �60 mV for inhibitory synapses. The peak
conductance g is measured in the unit of the leak conductance.
All excitatory synapses are modified according to the STDP rule
given in the text. The relevant parameters are set as Ap = 0.01,
Ad = 0.0105, �p = �d = 20 msec, and gmax = 0.015. The conduc-
tance of inhibitory synapses is fixed at gGABA = 0.05.

The effects of STDP were simulated as follows. Suppose that
a presynaptic spike at an excitatory synapse is followed by a post-
synaptic spike at time �t later. Then, the peak conductance of the
synapse is strengthened by an amount �g = gmaxAp exp(��t/�p) if
�t > 0, or depressed by an amount �g = gmaxAd exp(�|�t|/�d) if
�t < 0. The width of the learning time window is set as
�p = �d = 20 msec. The parameters Ap and Ad are determined such
that the leading depression effect Ad�d is 5% larger than the lead-
ing potentiation effect Ap�p. In most simulations, the LTS-
mediating synapses were initially distributed according to a
Gaussian distribution with mean ≈0.5gmax and standard devia-
tion ≈0.2gmax. The background-mediating synapses were initially
set at the maximal conductance. However, the learning perfor-
mance of the present model was almost independent of initial
conditions.
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